Layered DB

ASP Converters

Multi-Layered DB Application

The purpose of this paper is to explain the underlying design of a multi layered DB application.

 (a) USER VIEW – virtual level
(b) Multi-view database
 (c) Physical level

[image: image2.jpg]Pet Details

Name:

[image: image3.jpg]B
3763 - Aileen Power

[image: image4.jpg]Details [[TETECETS o o

Person Details
ID No: 3510 Inactive: [
Title:

First Name: [Nigel

Middle Name:

Last Name: [Leck

Nick Name: [leckie

Email:

Phone: 6575 8696 F Fax: [5979 8696
Mobile: 041 255 0157 Pager:
Favourite animal:pos

General Details

Gender: ~| poB:| TFN: |

Hobbies:[walking the dog

[C1 T

Notes: [He doesn’t like cats

) T 1)

Address

Address: [12 Beaconsfield St

1 T

Suburb/City:Newport
State: NSW -]

Country: Australia

Dostment. Dorie

Bisiess a Tesha Fina torast =

[image: image5.jpg]General Details

Person Details

Nick Name:

Phone:

ID No: 3510 Gender:]
Title: DOB:

First Name: [Nigel TFN:

Middle Name:| Key Words:

Last Name: [Leck *|Hobbies:

leckie

9979 8696

CEREIETH

Notes: [some Notes

Inactive if box is checked: ™

Address
Address: 12 Beaconsfield St

euport 2106
Suburb/City:
State: NSW ~| Postcode: [2106
Country: Australia =
Mail Address

Address:

Suburb/City:
State:

Document: Done

(“Business & Techa Funa Inferact =

[image: image6.jpg]Details|

Person Details

ID No: 3510 Inactive: [
Title:

First Name: [Nigel

Middle Name:

Last Name: [Leck

Nick Name: |[leckie

Email:

Phone: 9979 8696 Fax: [2979 8696
Mobile: [pat 255 0157 Pager:
General Details

Gender: ~| DoB:| TFN: |
Hobbies:

Notes: |[some Notes

Address

Address: [12 Beaconsfield St

Suburb/City:iewport

State: NSW ~| Postcode: [2106
Country: Australia =

Documert: Done.

T A=

[image: image7.png][

s3loN 3us 83M)
NoLLVEnG ssaway
Aa3na 3NOHd | |
oaoL NOSH3d | | ANVaWGS|
1]

I

3SVBYLYQ 400
odsy

80N
3NOHd
E

w31
HINOLSNO

[image: image8.wmf]row

global

key

Field

[image: image9.wmf]row

global

key

Field

[image: image10.wmf][image: image11.png]STANDARD OBJECT ORIENTED DATABASE

Assets Task Film
mobEL AsSIGN BY TRANSPARENT
‘PRicE ASSIGN 10 SPARKLE
STATUS ROLLSIE
BUE BY OPAQUE
Chargeable ToDo Eitting
Task
winpow
OVERHEADS ouE BY Yioo!
WARGIN DURATION V298
DELIVERY NoTES EHIcL
DISCOUNT BoAT.
Artwork Job
LocATion
Loco ASSIGNTO
SCan SN
CREATE e
cLEan P

At this virtual level we refer to CLASSES

The system may be conceived of as layers of transparent glass upon which information is printed. The center layer of glass contains basic information which has the potential to be viewed by all user groups. Subsequent layers of glass are added with each new layer having ever greater specificity to the user viewing the database. In other words the information on each additional layer has greater potential applicability to the user compared to that on lower layers. For example, one user group may view the database through specific set (or upper-most layer) Whereas another user group may view the database through a different angle. Both users may see information from the lower layers

It is possible for each new layer to change the information ultimately visible to the user. Each new layer may add additional information, delete information from lower layers or change other aspects such as the manner in which the information is presented on the user’s screen. This functionality, whereby each layer has the potential to present information to the user and to alter information from lower layers, is referred to in this document as “aggregation”.

The user experiences the system as a single virtual (object oriented) database. The interface is a combination of all layers from the engine, through the aspc layer, then up through a potentially very large number of layers (though in practice, 3 to five layers is the most common) such as an industry layer, an industry segment layer, then an individual company or user layer. A client views their data, as a unique slice through these layers.

The user’s data is always stored in databases in the physical level. Conceptually, each database may be made up of three generic tables (row, field and global key). For performance reasons these generic three tables may be broken down based on the root class of each. In each layer only the information that is different to the layers below is stored. When the system is enhanced you get the changes – plus you get to keep your changes. This allows a single system administrator to administer a large number of data bases, effectively as one. The system preferably has qualifiers and safeguards built in.

For the sake of illustration, a worked example will now be described based upon the following scenario:

The system administrator has a new client who runs a small business, Pet Store, a small chain of pet shops with associated grooming, boarding and exercise services. The client currently manages business information with a variety of customised spreadsheets and relational databases developed from off-the shelf products. The business was originally limited to the sale of pets and associated products but has grown quickly since the recent extension into providing pet services. With growth and increased complexity has come the need for a comprehensive data management system. The owner is looking to franchise the business, and therefore wants a system which will serve future needs of a central office and scattered, relatively independently run units. She has investigated the possibility of customising her existing databases to incorporate the additional information required for these additional facets of the business. She wants a single system that will fit her business needs precisely - and allow her to make changes when new extensions and directions for the business develop. She has decided that an internet based database application according to the preferred embodiment of the present invention will give the flexibility and performance she requires for her business at a price she can afford.

Client requirements

The client wants to use the database to record standard information such as client details (eg name, address, phone, mobile). They would also need various screens for data entry, searching, reports and so on. Many of these classes, and fields within, them would have been created already and exist in the engine and application layer. If there were a relevant industry layer, for example, for veterinary services, there may be existing classes such as animal type, medications, inoculation details and so on.

For the sake of simplicity the present example will assume that there is no such industry layer (i.e. intermediate set), so any classes relating to pets (animal type, breed, name, food requirements, likes and dislikes etc) will need to be created in the client specific layer (i.e. the specific set). However, there is no need to create a class for the owner details, as this will be inherited from the application layer (where it is called contact).

The new client also wants to be able to perform the standard transactions such as recording sales

(products), making bookings (boarding arrangements), scheduling jobs (eg, grooming, dog walking), and writing invoices.

What needs to be done

As with any new client, a new 'virtual database' (a compilation of all layers from the engine, up through increasingly customised layers) will be created. This must be done, no matter how closely the requirements of the new client fit with an existing database (eg an industry layer). If, this was not done, and, for example, the new client were allowed to enter data in one of the lower layers (eg. aspc_app), all users would see whatever data was entered, and would get whatever new classes and fields were added, in their database (layer). Creating a new virtual database for each new client (account holder) is the mechanism for keeping these changes separate, and for ensuring that account holders only see and have access to their own data.

The steps for programmers, in providing a customisable database to the requirements specified by Pet Store, which is accessible only by this client (and any users she authorises), would be to:

1. Create a new database for the client (Pet Store)

2. Create additional class in that layer, in the example, a new class 'pet' is created

3. Add three fields to class 'pet' id, name, owner & type.

4. Extend the class 'person' (inherited from contact) with a new field called 'favourite animal'.

The example also demonstrates some transactions executed in the pet_store layer:

5. A new record was created for class person, Tina Leck.

6. Two records were then created for class pet (Fido and Megs)

7. A pre-existing record for person was modified by over-loading to change their mobile phone, favourite animal and comments.

A description of the process for storing data and making a simple inquiry is included as an attachment (not linked to the pet_store example)

1. Creating a new database: pet_store

As with any new customer/account holder, a new Virtual Database must be created. This is where all the client’s records will be stored.

aspc_master functions as an index, holding all information about all other databases, their components and what they extend. It is not a layer. It has 4 tables.

DIAGRAM 1: aspc_master

List of relations

Name | Type | Owner

----------------+-------+----------

aspc_dns | table | postgres

aspc_server | table | postgres

aspc_virtualdb | table | postgres

next_number | table | postgres

(4 rows)

The master database table, aspc_server, (DIAGRAM 2) is used for creating new databases.

Information is stored here about where to locate the new database (what server), and what type it is (here postgres – could be oracle or any other type). Each new database is given unique number made up of the system's number (mask) and the next sequential number. This ensures a globally unique number.

DIAGRAM 2 : aspc_master database unique id

aspc_master=# select * from aspc_server;

 mask | signature | newdburl | newdbconnecttype

------------+-----------+-----------+-------------+------------------

 2097152000 | ASPC | devserver | POSTGRESQL

(1 row)

The process to do this is :

1) Generate a new globally unique layer ID which is a combination of the server mask

 (found in aspc_server) and the next sequential number.

2) Place a record into aspc_dns which contains the human readable name for the virtual database and the layer ID.

3) Create a new physical database for the layer, using an auto-generated name. This is a combination of the layer ID and signature from the table aspc_server) and database server location (from aspc_server) and database server type (from aspc_server)

4) Place a record into the table aspc_virtualdb with the layer ID, what this layer extends and other connection details from point 3.

aspc_server gives other information:

i. the database type (we have used postgres);

ii. what it is called;

iii. what it extends; and where it is physically located.

This, then, is all the information needed for creating the new virtual database.

The new virtual database, pet_store with its unique identification number, 2097152521, now appears in the list of virtual databases in the table aspc_dns (DIAGRAM 3). Databases can have several aliases, so users can find their database under various names

DIAGRAM 3:Virtual Data base names (and aliases)

aspc_master=# select * from aspc_dns;

 databaseid | signature

------------+----------------

 1 | aspc_engine

 2 | aspc_app

 2130706433 | supertracker

 2130706433 | aspc_design

 2 | aspc_base

 2097152021 | apt

 2097152011 | asp_converters

 2097152001 | jasonsdb

 2097152411 | self_test

 2097152421 | self_test1

 2097152431 | self_test2

 2097152331 | jasonsnewdb

 2097152341 | terry_db

 2097152441 | jasonsnewdb2

 2097152451 | jasondb1

 2097152491 | jasonsdb6

 2097152501 | alison

 2097152521 | pet_store

 2097152531 | battydb

 2097152541 | tina

Diagram 4 shows this same ID number inserted into aspc _virtualdb. In this way, the new virtual database’s relationship in the global system (that is, what layer it extends) is recorded. The pet_store layer extends layer 2, the aspc_app layer.

The new database is where ‘physically’ all the customer’s data is stored. This layer will ‘inherit’ all data from the layers it over-loads. In this case, pet_store will have access to all data from the application layer (aspc_app), and the engine layer (aspc_engine). Data includes everything, classes, fields, people, files, icons, screens, country codes, status codes, and tables etc, absolutely everything.

The number gives the location and which database it extends (i.e., it’s parent ID). The pet_store DB ID is 2097152521 (in some places this number is expressed as a hexadecimal and will read as 7d000209).

DIAGRAM 4: ASPC Virtual DB table

aspc_master=# select * from aspc_virtualdb;

 id | parentid | serverurl | name |connecttyp| limit | createddt |suspend|owner

------------+------------+-----------+-------------+----------+-------+------------------------+-------+----

 1 | 0 | devserver |aspc_engine |POSTGRESQL| 2 | 2001-02-17 00:00:00+11 | |

 2130706433 | 0 | devserver |aspc_design |POSTGRESQL| 5 | 2001-02-16 16:28:07+11 | |

 2 | 1 | devserver |aspc_app |POSTGRESQL| 5 | | |

 2097152021 | 2 | devserver |aspc_7d000015|POSTGRESQL| 1 | 2001-04-09 09:18:32+10 | |

 2097152011 | 2 | devserver |aspc_7d00000b|POSTGRESQL| 1 | 2001-04-09 09:18:32+10 | |

 2097152411 | 2 | devserver |aspc_7d00019b|POSTGRESQL| 1 | 2001-04-20 09:43:44+10 | |

 2097152421 | 2097152411 | devserver |aspc_7d0001a5|POSTGRESQL| 1 | 2001-04-20 09:43:58+10 | | 1

 2097152431 | 2097152411 | devserver |aspc_7d0001af|POSTGRESQL| 1 | 2001-04-20 09:44:14+10 | | 1

 2097152441 | 2 | devserver |aspc_7d0001b9|POSTGRESQL| 1 | 2001-04-20 13:30:08+10 | | 1

 2097152451 | 2 | devserver |aspc_7d0001c3|POSTGRESQL| 1 | 2001-04-20 13:35:03+10 | | 1

 2097152461 | 2 | devserver |aspc_7d0001cd|POSTGRESQL| 1 | 2001-04-20 14:16:40+10 | | 1

 2097152471 | 2 | devserver |aspc_7d0001d7|POSTGRESQL| 1 | 2001-04-20 14:53:59+10 | | 1

 2097152331 | 2 | devserver |aspc_7d00014b|POSTGRESQL| 1 | 2001-04-17 16:25:05+10 | | 1

 2097152481 | 2 | devserver |aspc_7d0001e1|POSTGRESQL| 1 | 2001-04-20 15:07:50+10 | | 1

 2097152341 | 2 | devserver |aspc_7d000155|POSTGRESQL| 1 | 2001-04-19 13:17:51+10 | | 1

 2097152491 | 2 | devserver |aspc_7d0001eb|POSTGRESQL| 1 | 2001-04-20 15:23:08+10 | | 1

 2097152501 | 2 | devserver |aspc_7d0001f5|POSTGRESQL| 1 | 2001-04-22 17:29:25+10 | | 1

 2097152511 | 2 | devserver |aspc_7d0001ff|POSTGRESQL| 1 | 2001-04-24 13:54:30+10 | | 1

 2097152521 | 2 | devserver |aspc_7d000209|POSTGRESQL| 1 | 2001-04-24 14:00:27+10 | | 1

 2097152531 | 2 | devserver |aspc_7d000213|POSTGRESQL| 1 | 2001-04-24 14:23:40+10 | | 1

 2097152541 | 2 | devserver |aspc_7d00021d|POSTGRESQL| 1 | 2001-04-25 08:52:07+10 | | 1

(21 rows)

Physical tables in the new pet_store database

The tables shown in DIAGRAM 5 are all those created for the pet_store virtual database (layer). The table names are made up of a global identifier for the name (the layer ID), the class ID in that layer of the root class ID (see Diagram 5 ).

At the conceptual level of the system, only three tables would be needed. However, this would make searching very slow. So to speed up performance these tables are split up based on the root class. For example, one set for contacts, one for screens, one for payments, and so on. This means to do a search for, say, contacts, only one set of smaller tables has to be scanned.

Each field has a type eg float, string, and date. When a record is written to the database, for each field that is marked as ‘searchable’, the data also gets written into the corresponding key table.

DIAGRAM 5: List of relations pet_store virtual database

 Name | Type | Owner

------------------------------+-------+--------------

 field_00000001_00000001 | table | servlet_user

 field_00000001_00000002 | table | servlet_user

 field_00000001_0000000c | table | servlet_user

 field_00000001_000000aa | table | servlet_user

 field_00000001_000001e0 | table | servlet_user

 field_00000001_00000262 | table | servlet_user

 field_00000001_00000278 | table | servlet_user

 field_7d000209_00000002 | table | servlet_user

 key_date_00000001_00000001 | table | servlet_user

 key_date_00000001_00000002 | table | servlet_user

 key_date_00000001_0000000c | table | servlet_user

 key_date_00000001_000000aa | table | servlet_user

 key_date_00000001_000001e0 | table | servlet_user

 key_date_00000001_00000262 | table | servlet_user

 key_date_00000001_00000278 | table | servlet_user

 key_date_7d000209_00000002 | table | servlet_user

 key_global_00000001_00000001 | table | servlet_user

 key_global_00000001_00000002 | table | servlet_user

 key_global_00000001_0000000c | table | servlet_user

 key_global_00000001_000000aa | table | servlet_user

 key_global_00000001_000001e0 | table | servlet_user

 key_global_00000001_00000262 | table | servlet_user

 key_global_00000001_00000278 | table | servlet_user

 key_global_7d000209_00000002 | table | servlet_user (pet_store global identifier)

 key_long_00000001_00000001 | table | servlet_user

 key_long_00000001_00000002 | table | servlet_user

 key_long_00000001_0000000c | table | servlet_user

 key_long_00000001_000000aa | table | servlet_user

 key_long_00000001_000001e0 | table | servlet_user

 key_long_00000001_00000262 | table | servlet_user

 key_long_00000001_00000278 | table | servlet_user

 key_long_7d000209_00000002 | table | servlet_user

 key_string_00000001_00000001 | table | servlet_user

 key_string_00000001_00000002 | table | servlet_user

 key_string_00000001_0000000c | table | servlet_user

 key_string_00000001_000000aa | table | servlet_user

 key_string_00000001_000001e0 | table | servlet_user

 key_string_00000001_00000262 | table | servlet_user

 key_string_00000001_00000278 | table | servlet_user

 key_string_7d000209_00000002 | table | servlet_user (pet_store searchable fields)

 next_number | table | servlet_user

 row_00000001_00000001 | table | servlet_user

 row_00000001_00000002 | table | servlet_user

 row_00000001_0000000c | table | servlet_user

 row_00000001_000000aa | table | servlet_user

 row_00000001_000001e0 | table | servlet_user

 row_00000001_00000262 | table | servlet_user

 row_00000001_00000278 | table | servlet_user

 row_7d000209_00000002 | table | servlet_user (pet_store class)

 trans_data_00000001_00000001 | table | servlet_user

 trans_data_00000001_00000002 | table | servlet_user

 trans_data_00000001_0000000c | table | servlet_user

 trans_data_00000001_000000aa | table | servlet_user

 trans_data_00000001_000001e0 | table | servlet_user

 trans_data_00000001_00000262 | table | servlet_user

 trans_data_00000001_00000278 | table | servlet_user

 trans_data_7d000209_00000002 | table | servlet_user (pet_store transactions)

 trans_header | table | servlet_user

 trans_record | table | servlet_user

2. Create additional class in the new layer

As well as the inherited classes from layers it extends (1 and 2), pet_store requires at least one additional class to store details needed by this type of business (eg 'pet' id, name, owner and type). The class will not be seen by any other database (unless a decision is made that it might be useful for other types of businesses). If this were the case, the programmer would create a new class in the appropriate layer. If it went into aspc_engine or aspc_app it would be available to all other databases (and users). If it were created in the industry layer (at present there is no industry layer for pet stores) it would be available to all databases that extend that layer.

DIAGRAM 6: Pet class row table

select * from row_00000001_00000001;

row_uid
 | database_id | class_gid | owner_id | deleted_dt

---------------------+-------------+----------- +----------+------------

 9007201492418953221 | 2097152521 | 1@1 | 1 |

(1 row)

To create any new record requires a row number, the db number, the class (1@1 = class 1 in layer 1), the owner, and deleted date. To make one record for anything, one entry in row table giving the row number, then the non-blank fields that it has, for each row are entered in the field table.

One new class, ‘pet’ has been created in the pet_store layer. Pet is now a record of type DB class. Joining row (Diagram 6) and field (Diagram 7) & Global keys (Diagram 8) gives the record details.

The new class called ‘pet’ has been created. It has two fields, a number (2) and name (pet). These values are inserted in 2 rows. Diagram 7 shows how field data is stored – all the system needs is the row id (9007201492418953221) and field id (2381@1). Note that the field id shows what layer it is located in (layer I, aspc_engine). It gives only two values for the class, it’s id is 2 and that its name is pet.

DIAGRAM 7: Fields for class pet

select * from field_00000001_00000001;

row_uid | field_gid | value | seq

---------------------+-----------+-------+-----

 9007201492418953221 | 2381@1 | 2 | 0

 9007201492418953221 | 2383@1 | Pet | 0

(2rows)

For these fields in this class ‘pet’ there is no row for global keys (Diagram 8) because at the moment these fields are not linked to anything, they have no ‘second dimension’. Later, when we link Pet’s owner to person, global key will show the fields second dimension.

DIAGRAM 8:Global keys for class pet

select * from key_global_00000001_00000001;

row_uid | field_gid | value

---------+-----------+-------

(0 rows)

The transaction data for class pet shows that the row has changed (the sequential number), what field was changed (2381@1). It doesn’t say who changed it or what they changed it to or for what class. That is entered later, in transheader and transrecord. These are used for the journaling feature. (NOTE: This is a key feature of the dbase and is very valuable

DIAGRAM 9:Transaction data for class pet

select * from trans_data_00000001_00000001;

row_uid
 | trans_id | field_gid | value | seq

-------------------- +-------------+-----------+-------+-----

 9007201492418953221 | 4 | 2381@1 | 2 | 0

 9007201492418953221 | 4 | 2383@1 | Pet | 0

 (In transaction #4, the values 2 and Pet were inserted. That is, these were the fields that changed)

3. Create additional fields for class 'pet': id, name, owner and type

Four fields were then created for the class ‘pet’ - id, name, type and owner (as shown in Diagram 10. One additional field, ‘favourite animal’ was then created (as shown in Diagram 11) in ‘person’ table (i.e. the existing person class in layer 1 was extended with this additional field). It was created in the pet_store layer and only linked to the layer 1 class because knowing a client or employees ‘favourite animal’ would be relevant to very few business. The field will not be seen by other databases. It is only available in the pet_store layer. If the field had been created in layer 1, all layers above would have been able to see it.

The recursive nature of the system becomes apparent as we go further into creating fields for the new class pet. The class pet has id=2 and has several fields linked to it. One of those fields is the one that says what points to what data.

NOTE:

· Classes and fields are just data – no more special than anything else.

· All classes are made up of the class itself and the fields that are in that class

· In the physical tables for dbclass there is an entry for dbclass and dbfield

· Pet is a record of class dbclass

· Fido is a record of class pet

Although conceptualising and articulating this recursiveness is difficult, it is the key to the effectiveness of the system. Because everything is stored and works in the same consistent manner fields can be over- loaded. And the capacity to over-load, extend anything – whether it is a field, a class, value – is what allows us to have a system behaving differently for many different users.

The field ‘owner’ was linked to ‘person’ (class 50) as shown in Diagram But that isn’t enough. We need to know the second dimension. The global key shows us that it is 50@ We extended ‘person’ with a new field called ‘favourite animal’ which was just a piece of text in common class ‘50’ – but 50@1 – which gives the class that this field is associated with.

DIAGRAM 10: Virtual DBField physical tables for ‘pet’

select * from row_00000001_00000002;

row_uid
 | database_id | class_gid | owner_gid | deleted_dt

---------------------+-------------+-----------+-------------+------------

 9007201492418953223 | 2097152521 | 2@1 | 1 |

 9007201492418953225 | 2097152521 | 2@1 | 1 |

 9007201492418953227 | 2097152521 | 2@1 | 1 |

 9007201492418953239 | 2097152521 | 2@1 | 1 |

 9007201492418953250 | 2097152521 | 2@1 | 1 |

(5 rows)

DIAGRAM 11: All Fields for class pet, and their attributes

select * from field_00000001_00000002;

row_uid
 | field_gid | value | seq

---------------------+-----------+------------------+-----

 9007201492418953223 | 940@1 | 2 | 0

 9007201492418953223 | 941@1 | 2 | 0 (= id)

 9007201492418953223 | 942@1 | id | 0 (= class id)

 9007201492418953223 | 943@1 | INTEGER | 0

 9007201492418953223 | 945@1 | Y | 0

 9007201492418953225 | 940@1 | 4 | 0

 9007201492418953225 | 941@1 | 2 | 0

 9007201492418953225 | 942@1 | name | 0

 9007201492418953225 | 943@1 | STRING | 0

 9007201492418953227 | 940@1 | 6 | 0

 9007201492418953227 | 941@1 | 2 | 0

 9007201492418953227 | 942@1 | type | 0

 9007201492418953227 | 943@1 | STRING | 0

 9007201492418953223 | 946@1 | Y | 0 (= ?)

 9007201492418953239 | 940@1 | 12 | 0

 9007201492418953239 | 941@1 | 50 | 0

 9007201492418953239 | 942@1 | favourite_animal | 0

 9007201492418953239 | 943@1 | STRING | 0

 9007201492418953250 | 940@1 | 23 | 0

 9007201492418953250 | 941@1 | 2 | 0

 9007201492418953250 | 942@1 | owner | 0

 9007201492418953250 | 943@1 | INTEGER | 0

 9007201492418953250 | 2479@1 | 50 | 0 (=links to)

 9007201492418953250 | 2486@1 | Y | 0 (=can delete)

(24 rows)

Global Keys (linkages)

The system must know the location of every entity globally –which layer it is located in. Global keys are the mechanism used for making these linkages – that is, for locating linked fields.

Each field written into the DB is recorded as row id, field id and its value. This is enough information for an unlinked field (that is, one like pet name, created in pet_store layer). If it is a linked field a second dimension must be given to identify which layer it extends (that is, which layer the ‘parent’ field is located in. All linked fields have two dimensions:

1. A value eg NSW, Jim, twenty three

2. What does it link to eg person, invoice, address

The Global id is a unique identifier for the value eg field_gid = 10@1
row_id
field_gid
value

4294969973
10@1
x

The global key (really just two global ids) gives the value and the class, that is, what it points to. Any record in any database can be found using this identifier.

Example: a field ‘country’ in class ‘person’.

The key information for locating the record is the field_gid

value
@
database
~
class
@
Database

1
@
25 (db number)
~ (separator)
50 (person)
@
1 (engine)

DIAGRAM 12: Global Keys in the pet_store example

select * from key_global_00000001_00000002;

 row_uid | field_gid | value

---------------------+-----------+------------------

 9007201492418953225 | 941@1 | 2@2097152521~1@1

 9007201492418953225 | 943@1 | STRING@1~650@1

 9007201492418953227 | 941@1 | 2@2097152521~1@1

 9007201492418953227 | 943@1 | STRING@1~650@1

 9007201492418953223 | 941@1 | 2@2097152521~1@1

 9007201492418953223 | 943@1 | INTEGER@1~650@1

 9007201492418953239 | 941@1 | 50@1~1@1

 9007201492418953239 | 943@1 | STRING@1~650@1

 9007201492418953250 | 2479@1 | 50@1~1@1

 9007201492418953250 | 941@1 | 2@2097152521~1@1

 9007201492418953250 | 943@1 | INTEGER@1~650@1

(11 rows)

The new class pet has been created with four new fields. One new field has been created in person class(favourite animal). The field ‘owner’ in Pet is a linked field which points to person class in layer 1, aspc_engine. Only the ‘owner’ field requires a Global key to indicate the location of the linked class.

4. Extend the class ‘person’ with a new field called 'favourite animal'

Extend is the term used to describe adding additional fields to the class person. For example, the class person (in contact, layer 1) was ‘extended’ in the pet_store layer to include a new field ‘owner’. Although the extended class is in layer 1, this layer is not affected and no other users will see the newly created class ‘owner’. In the example shown (Diagram 14) Nigel Leck has been entered in the engine layer. This is for demonstration purposes only and would not usually be done, as this entry will now appear in all layers above.

5. Create a new record for person, Tina Leck

Details about pet owners are stored in ‘person’. Although a field, ‘owner’, has been created for the pet_store layer, as explained previously, it is a linked field which points to class ‘person’ which is located in layer 1. Diagrams 30 shows the physical tables for ‘contact’. The new record for person Tina Leck is inserted and registers in the pet_store layer along with the over-loaded record.

DIAGRAM 13: Row table for ‘Contact’

select * from row_00000001_0000000c;

row_uid | database_id | class_gid | owner_id | deleted_dt

---------------------+-------------+-----------+----------+------------

 9007201492418953217 | 2097152521 | 50@1 | 0 |

 4294969756 | 1 | 50@1 | 1 |

(2 rows)

overloaded record

6. Create two records for pet

The five fields created for pet_store can now be viewed appear on the screen of the user’s virtual object oriented database. Two new records are created for pet details, as shown in Diagrams 18 and 19. The data entry screen for these records are shown in Diagrams 14 and 15.

DIAGRAM 16: New record, which only exists in pet_store layer

[image: image1.jpg]Id Name Type Owner
73 Fido DOG 8510
75 Cat Megs B763

isess = Techa P Interast =

DIAGRAM 17: Pet physical tables (pet_store layer)

select * from row_7d000209_00000002;

row_uid
 | database_id | class_gid | owner_id | deleted_dt

---------------------+-------------+--------------+------------+----------+------------

 9007201492418953251 | 2097152521 | 2@2097152521 | 1 |

 9007201492418953252 | 2097152521 | 2@2097152521 | 1 |

(2 rows)

select * from field_7d000209_00000002;

row_uid | field_gid | value | seq

---------------------+---------------+--------+-----

 9007201492418953251 | 2@2097152521 | 3
 | 0

 9007201492418953251 | 4@2097152521 | Fido
 | 0

 9007201492418953251 | 6@2097152521 | DOG
 |

 9007201492418953251 | 23@2097152521 | 3510
 | 0

 9007201492418953252 | 2@2097152521 | 5
 | 0

 9007201492418953252 | 4@2097152521 | Cat
 | 0

 9007201492418953252 | 6@2097152521 | Megs
 | 0

 9007201492418953252 | 23@2097152521 | 3763
 | 0

rows)

When storing a record only the differences to the record at the layer below are stored.

8. Modify a pre-existing record for person by over-loading

In this section of the example a record for Nigel Leck (as explained previously, normally only items required by all users (perhaps countries) would be entered in the engine layer. Here it was done for demonstration purposes - to show how it was over-loaded in the application and pet_store layers.

Over-loading a field

Over-loading is the term used to describe any change made to a record from layers below. For example, the phone and notes fields in pet_store were over-loaded with new data in fields that exist in layers below it.

DIAGRAM 18: fields for contact in pet_store layer

select * from field_00000001_0000000c;

 row_uid | field_gid | value | seq

---------------------+---------------+----------------------+-----

 9007201492418953217 | 40@1 | Nigel Leck | 0

 9007201492418953217 | 55@1 | 9999 | 0

 9007201492418953217 | 10@1 | 1 | 0

 9007201492418953217 | 62@1 | Nigel | 0

 9007201492418953217 | 64@1 | Leck | 0

 4294969756 | 1931@1 | walking the dog | 0 (hobby)

 9007201492418953217 | 12@2097152521 | himself | 0

 4294969756 | 57@1 | He doesn't like cats | 0

 4294969756 | 12@2097152521 | Dog | 0

(9 rows)

Field 1931@1 already exists in class contact in layer 1 (as shown in Diagram 13) and has been over-loaded in the pet_store layer to become the field ‘hobby’.

The following DIAGRAMS 19, 20 and 21 show screens for the same contact person record in three different layers,

1. layer 1, the engine (aspc_engine)
- the default screen

2. layer 2, the application layer, aspc_app
- the default screen with altered layout

3. the new virtual database, pet_store
- the default screen with altered layout and added field

This demonstrates that in the pet_store layer only three fields need to be overloaded, hobby, notes (both over-loaded) and the new field “favourite animal” (value=dog).

i. In engine there is no entry for mobile phone (Diagram 19), it is listed in the application level (Diagram 17) and is then inherited into the pet_store layer.

ii. The fax number from engine is over-loaded (with a changed number) in the application level. This is the number that is then inherited into the pet_store layer.

iii. Notes are the same in engine and application level, but over-loaded in the pet_store layer (with the value “ he doesn’t like cats”).

iv. Hobbies has no entry in engine or application but is over-loaded in pet_store with an entry “ walking the dog” (Diagram 21).

v. A new field ‘favourite animal’ has been added to the pet_store layer and the value ‘dog’ entered (Diagram 21)

Screens in 3 Different Database layers

Physical tables for ‘Contact’ aspc_engine layer

DIAGRAM 22 : Row table for ‘Contacts’(sample only)

select * from row_00000001_0000000c where row_uid = 4294969756;

row_uid | database_id | row_id | class_gid | owner_id | deleted_dt

------------+-------------+--------+-----------+----------+------------

 4294969756 | 1 | 2460 | 50@1 | 3510 |

(1 row)

DIAGRAM 23 : Field table for ‘Contacts’

select * from field_00000001_0000000c where row_uid = 4294969756;

row_uid | field_gid | value | seq

------------+-----------+-----------------------------------+-----

 4294969756 | 10@1 | 3510 | 0

 4294969756 | 40@1 | Nigel Leck | 0

 4294969756 | 51@1 | AU | 0

 4294969756 | 52@1 | NSW | 0

 4294969756 | 53@1 | 12 Beaconsfield St Newport 2106 | 0

 4294969756 | 54@1 | 2106 | 0

 4294969756 | 55@1 | 9979 8696 | 0

 4294969756 | 57@1 | Some Notes | 0

 4294969756 | 62@1 | Nigel | 0

 4294969756 | 64@1 | Leck | 0

 4294969756 | 65@1 | nigel@lecklogic.com.au | 0

 4294969756 | 56@1 | 9979 8682 | 0

 4294969756 | 70@1 | leckie | 0

(13 rows)

Physical tables for ‘Contact’ aspc_app layer

DIAGRAM 24 : Row table for 'Contact' aspc_app layer

select * from row_00000001_0000000c where row_uid = 4294969756;

row_uid | database_id | row_id | class_gid | owner_id | deleted_dt

------------+-------------+--------+-----------+----------+------------

 4294969756 | 1 | 1 | 50@1 | 3510 |

(1 row)

DIAGRAM 25 : Field table for 'Contact' aspc_app layer

select * from field_00000001_0000000c where row_uid = 4294969756;

row_uid | field_gid | value | seq

------------+-----------+--------------+-----

 4294969756 | 71@1 | 041 255 0157 | 0

 4294969756 | 56@1 | 9979 8680 | 0

(2 rows)

DIAGRAM 26 : Global keys table for 'Contact' aspc_app layer

select * from key_global_00000001_0000000c where row_uid = 4294969756;

row_uid | field_gid | value

------------+-----------+-------------

 (0 rows)

DIAGRAM 27 : Transaction Data table for 'Contact' aspc_app layer

select * from trans_data_00000001_0000000c where row_uid = 4294969756;

 row_uid | trans_id | field_gid | value | seq

------------+----------+-----------+-------+-----

 4294969756 | 32522 | 71@1 | | 0

 4294969756 | 32522 | 79@1 | | 0

 4294969756 | 32522 | 56@1 | | 0

(3 rows)

Physical tables for ‘Contact’ pet_store layer

The same pattern of tables exists for pet_store layer, row, field and global ID. This consistency in structure is the key to the system’s power. Everything within every dbase is stored in the same way.

DIAGRAM 28: Physical tables for ‘Contact’

select * from row_00000001_0000000c;

row_uid
 | database_id | class_gid |owner_id |deleted _dt

-------------------+-------------+---------- +------- +--

9007201492418953217| 2097152521 | 50@1 | 0 |

 4294969756| 1 | 50@1 | 1 |

(2 rows)

DIAGRAM 29: Field tables for contact, pet_store layer

Showing over-loaded fields, hobby, notes and so on.

select * from field_00000001_0000000c;

 row_uid | field_gid | value | seq

---------------------+---------------+----------------------+-----

 9007201492418953217 | 40@1 | Nigel Leck | 0

 9007201492418953217 | 55@1 | 9999 | 0

 9007201492418953217 | 10@1 | 1 | 0

 9007201492418953217 | 62@1 | Fido | 0

 9007201492418953217 | 64@1 | Leck | 0

 4294969756 | 1931@1 | walking the dog | 0 (hobby)

 9007201492418953217 | 12@2097152521 | Dolphin | 0(favourite animal)

 4294969756 | 57@1 | He doesn't like cats | 0

 4294969756 | 12@2097152521 | Dog | 0

(9 rows)

Fields which have been over-loaded (they exist in another layer) can be identified by their different row with id. Their number is shorter as it only shows the record number (4294969756) and does not include the dbase id (in this case, 9007201). Here the new record Tina Leck and other pet_store fields can be identified by the pet_store db id 9007201.

DIAGRAM 30: Global keys table for 'Contacts'

select * from key_global_00000001_0000000c;

 row_uid | field_gid | value

------------+-----------+-------------

(0 row)

9. Storing and Inquiry: notes and example (not pet_store specific)

Storing (physical level)

To save data only two things must occur.

1. each record is put into a row table by its row number

2. each field is put into a field table (row id, field, value)

The row id (a 64 bit number containing the layer id and the unique row id) gives the location (what layer/database) it is owned by. Once this is known the system is directed to each layer from the base up, loading into each to build to the aggregate of the all the fields. As it proceeds with this operation, new data replaces what was located in the previous layer.

As with other functions, additional performance enhancements have been added, for example, rather than storing in a single huge table, separate tables have been created to increase speed.

Making an inquiry (Illustration of the separation of databases)

The inquiry process is the same no matter what is being requested, a person, a class a field etc.

Example: How to find all contacts in a company database

contact = 12@1
company

(52@1)

person

(50@1)

favourite restaurant
(30@70)

Here, Layer 70 (the company database) extends layer 2 (application) which extends 1 (the engine). Commands would be:

Search company layer (70)

Each inquiry executes three physical queries:

Layer 70 (company layer)
select row_uid/xlayer companyx/ from field 000000010000000c where class_gid is (‘12@1’, ‘52@1’. ‘50@1’, ‘30@70’)

 Layer 2 (application)
select row_uid / x layer:appx / from field 00000001_0000000c where class_gid is (‘12@1’, ‘50@1’)

Layer 1 (engine)
 “

”

select

For a specific inquiry

(Remembering that all fields can be over-loaded. This adds a level of complexity to the search process.

A series of six inquiries must be made

Example: Find all people in NSW with a mobile phone

Two strategies, depending on where item is located:

1. In the current layer

 Request all records that match this (value), and this (value). The process of firing off three inquiries would occur i.e. all fields matching the search criteria in this layer. (an AND condition)

2. Then because all fields can be over-loaded, a second inquiry needs to be done to check the two layers which may have been extended. Layer (1) cannot be extended and therefore does not need checking.

This search would be “ Search for all records not owned by this layer that any of these fields match (an OR condition)

Example:

In layer 1 (aspc_engine)

Inquiry task : To retrieve one object (eg customer last name) of class person

Class: PERSON (50)

Field: id
(10

Field: phone
(55)

Field: name
(40)

Field: gender
(79)

 The system would request all rows of class 50 (person)

 Results in a list of all row numbers for all people listed in the database

 Select row field

 Select row ID number

 data for row (objects)

At the virtual level, once the row ID is located data is loaded to the object.

8. Terminology

Item /Term
Descriptor or abbreviation used
Explanation

Attribute

property of a relation

business rule

a restriction on an organisation’s activities that must be reflected in any model of that organisation

Class

logical group represented by a table eg contact, task

Client

that part of a DBMS that displays information on a screen and responds to user input (i.e. the front end)

Column

a component of a table that holds a single attribute of the table

Conceptual level
CL
all the elements needed for the system to function

Database

self-describing (i.e. data includes a description of its own structure) collection of integrated records

Database application
DB
user interface programs that work with a database to maintain and deliver information (including screens, reports, inquiries)

database engine
engine
that part of a DBMS that directly interacts with the database

Database management system
DBMS
stores all the information about the physical location of data stored in a database

database server
DBServer
computer or group of computers where the physical database is held

Extend

create an entity by using information in tables in layers below current layer

Implementation level
IL
conceptual level elements plus additional elements created for performance or commercial reasons eg id of account holder

Inherit

entities in any layer which have been created in a layer or layers below. For example the person contact is stored in the engine layer but is inherited by all layers above it.

Key

unique value which acts as a row identifier in a relation

Layer
layer
database located above the master database

Overload

make any change in a record located in a layer below. The resulting change is seen only in the over-loaded layer.

Mask

system number out of an allocated range

Parent

the single entity in a one-to-many relationship (in this system, that which is extended)

Relation

two dimensional array of rows and columns (table) containing single-value entries and no duplicate rows

Row

individual instance of a relation

Table

a relation expressed as a two dimensional array of rows and columns

Transaction

a sequence of SQL statements whose effect is not accessible to other transactions until all the statements are executed.

Virtual
VH
Functioning through connection with attribute(s) of a physical entity, but having no actual embodiment itself.

Virtual database
VDB
as seen by the user, a combination of layers through from the engine upwards

Examples

� HYPERLINK "mailto:940@1"��940@1� = id

� HYPERLINK "mailto:940@1"��941@1� = class id

� HYPERLINK "mailto:940@1"��942@1� = name

� HYPERLINK "mailto:247@1"��247@1� = links to

� HYPERLINK "mailto:247@1"��2486@1� = can delete

In row id only the value ‘2’ is given. This alone will not enable location – it could be’2’ in any layer. Diagram 12 shows how the global key identifies the value AND it’s layer (what it extends)

One record for person. Field ‘Favourite animal’ points to class 50 (person). The global key is the mechanism for making that connection, to give the second dimension to the field.

Diagram 10 shows the five additional fields created for class pet. ID, type, pet name and owner (in pet_store layer) are all linked to class 2 (the id # for pet) on pet_store layer. The field “ favourite animal” which extends the class person (50) in layer 2.

These fields can be seen again in Diagram 11.

5 rows for 5 fields.

4 for pet and

1 for person

� HYPERLINK "mailto:2@1"��2@1� is the class id for dbfields located in layer 1, aspc_engine. Pet also has a value 2 but it is in the pet_store layer. To know the precise location of every entity in the system value and layer (level) must be indicated. GLOBAL KEYS are the mechanism for storing this information. Global keys are explained in the next section.

eg. Person class

�

DIAGRAM 15

�

DIAGRAM 14

Here we show the pet_store db 2097152521 is linked to layer 2 (aspc_app) which in turn over-loads layer 1 (aspc_engine) which does not over-load any other layer.

(contact table located in layer 1. All contacts in all virtual databases have this identifier)

a table created in the pet��_store layer. The number is made up of the layer id 7d000209 and root class id 00000002 (in layer 2)

new record Tina Leck

�

�

DIAGRAM 20: Person screen, Physical DB, Application layer (asp_app)

DIAGRAM 21: Person Screen, virtual db, pet_store layer

DIAGRAM 19: Person Screen, Physical DB, Engine layer (aspc_engine)

�

�

aspc_engine (layer 1)

�	

	

 aspc_app (layer 2)

	

�	

aspc_2f000d (pet_store layer)

row

globalkey

Field

aspc_master

aspc_�dns

aspc_server

aspc_virtualdb

next_number

Engine, application and the aspc_master are all standard relational SQL 92 compliant databases.

At this physical level we refer to TABLES

This section of the multi-view system is the mechanism for storing the data – the physical level.

This outer layer is where the pet_store database will be located.

Standard OO Database Application

Nigel Leck
Layer DB Example
Page 21 of

